
Unix CLI and Some C

Goals Today...

● Getting connected to the Linux machines.

● Principles of Unix Shell commands.

● Command line text editing.

● Makefiles and compiling C programs.

● Compiling a Linux Kernel.

Connecting to Linux Machines

● There are four Linux boxes in O/U 308
– tron.cs.kzoo.edu

– pong.cs.kzoo.edu

– joust.cs.kzoo.edu

– frogger.cs.kzoo.edu

● The only way to connect remotely is through
ssh.
– From a Mac, start a terminal and type:

● ssh yourusername@curie.cs.kzoo.edu

– From a PC, download putty, and follow the
instructions.

mailto:yourusername@curie.cs.kzoo.edu

Why Bother with a CLI?

● Convenient for low bandwidth connections.

● There are always some jobs that are difficult or
impossible with a GUI.

Unix Commands

● Many too many to talk about here.

● A few useful ones.
– pwd, ls, cp, mv, rm, mkdir

– cat, less, more, tail

– grep, who, diff, wc, date

– man

Providing Input to Commands

● Commands generally take two types of input:
– Flags change the way the command works,

● ls

● ls -l

● ls -la

– Files specify the data the the commands will act on.
● ls -l tmp.txt

● cp tmp.txt tmp_cpy.txt

Specifying Files

● Files may be specified according to relative or
absolute paths.

● Absolute:
– ls -l /home/nsprague/myfile.txt

● Relative
– ls -l myfile.txt

– ls -l ../myfile.txt (“. . ” indicates directory above
the current directory)

Wildcards

● Most commands that accept file input, accept
wildcards that allow pattern matching.

● * represents anything.

● ? represents any single character.
● cat *.txt

– prints the contents of every file that ends in .txt.

● cat file?.txt

– prints file1.txt, file2.txt, filea.txt, etc.

Redirection

● Output can be redirected to a file:

– ls -l > file_list.txt (creates)

– ls -l >> file_list.txt (appends)

● Input can be read from a file:
– grep thestring < look_in_file.txt

Pipes

● Output from one command can be “piped” into
the input of another:
– who | ls -l

– who | grep sprague | wc -l > num_sprague.txt

Building Programs in C

● Unlike Java, C programs typically have separate
files for declarations (.h) and definitions (.c).

● If one file_a.c needs to access methods defined
in file_b.c, then it will include a statement like:
– #include “file_a.h”

● This is a preprocessor directive.

● It does exactly what you would expect.

● C compilation really has three steps:
– preprocess -> compile -> link.

Sample C Program

● fibonacci.h:

● fibonacci.c:

#ifndef FUNCTIONH_DEFINED
#define FUNCTIONH_DEFINED

int fibonacci(int n);

#endif

#include "fibonacci.h"

int fibonacci(int n) {
 if (n <=1) {
 return 1;
 } else {
 return fibonacci(n-1) + fibonacci(n-2);
 }
}

Protects against repeated includes.

Continued

● main.c

● argc and argv???

● Command line arguments:
– argc is the number, argv is an array of char*'s

(strings)

int main(int argc, char* argv[]) {

 int num = atoi(argv[1]);
 printf("%d\n", fibonacci(num));
}

Pointers to Functions

● Let's look at some sample code...

Compiling C Programs: The
Simple Way

● gcc the_code1.c the_code2.c

– Results in an executable named a.out.

– Note that we don't need to list any .h files.
● gcc the_code1.c the_code2.c -o the_program

– Results in an executable named the_program.

Compiling C Programs

● What if you have 33432 .c files, and you only
changed one?

● We can create object files (.o) that can be
linked into the final executable.
– .c -> compiler -> .o -> linker -> executable

● We can recompile just one file, then relink.

● Sounds like a pain to keep track of...
– make is a utility for keeping track of dependencies

when building large programs.

– Gets its input from makefiles.

Makefiles

● Simple makefile:

● Format is:

#here is a simple makefile
all: fibonacci.o main.o
 gcc fibonacci.o main.o -o fib

main.o: main.c
 gcc -c main.c

fibonacci.o: fibonacci.c fibonacci.h
 gcc -c fibonacci.c

clean:
 rm -rf *.o fib

Tabs

target: dependencies
<TAB>action

More on Makefiles

● It is also possible to use variables:

● There is much much more...

#here is a simple makefile
CC = gcc
CFLAGS = -c -g
all: fibonacci.o main.o
 $(CC) fibonacci.o main.o -o fib

main.o: main.c
 $(CC) $(CFLAGS) main.c

fibonacci.o: fibonacci.c fibonacci.h
 $(CC) $(CFLAGS) fibonacci.c

clean:
 rm -rf *.o fib

Debugging C Programs

● The GNU debugger is gdb.

● Notice the -g on the previous slide.

● Tells gcc to include debugging information in
the executable.

● Running the debugger:
– gdb your _execut abl e

● Set t i ng a br eakpoi nt :
– break fibonacci.c:6

– run

Compiling and Installing A Linux
Kernel

● Let's do it...

Linux Coding Preview

● Even when compressed, the Linux kernel takes
up about 45 megabytes.

● Problem is keeping track of many different
versions related by small changes.

● Solution is diff/patch.

● Creating a patch:

● Applying a patch (in the top level source
directory.)

diff -uprN linux-2.6.12-vanilla linux-2.6.12-withchanges > /tmp/patch

patch -p1 < /tmp/patch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

