
Pipelining

Chapter 4 — The Processor — 2

Performance Issues
 Longest delay determines clock period

 Critical path: load instruction
 Instruction memory → register file → ALU →

data memory → register file
 Not feasible to vary period for different

instructions
 Violates design principle

 Making the common case fast
 We will improve performance by pipelining

Chapter 4 — The Processor — 3

Pipelining Analogy
 Pipelined laundry: overlapping execution

 Parallelism improves performance

§4.5
 A

n
 O

verv iew
 of P

ipelin
in

g Four loads:
 Speedup

= 16/7 = 2.3

 Non-stop:
 Speedup

= 4n/n + 3 ≈ 4
= number of stages

Chapter 4 — The Processor — 4

MIPS Pipeline
 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Chapter 4 — The Processor — 5

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 6

Pipeline Speedup
 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages
 If not balanced, speedup is less
 Speedup due to increased throughput

 Latency (time for each instruction) does not
decrease

Chapter 4 — The Processor — 7

Hazards
 Situations that prevent starting the next

instruction in the next cycle
 Structure hazards

 A required resource is busy
 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard
 Deciding on control action depends on

previous instruction

Chapter 4 — The Processor — 8

Structure Hazards
 Conflict for use of a resource
 In MIPS pipeline with a single memory

 Load/store requires data access
 Instruction fetch would have to stall for that

cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require
separate instruction/data memories
 Or separate instruction/data caches

Chapter 4 — The Processor — 9

Data Hazards
 An instruction depends on completion of

data access by a previous instruction
 add $s0, $t 0, $t 1

sub $t 2, $s0, $t 3

Chapter 4 — The Processor — 10

Forwarding (aka Bypassing)
 Use result when it is computed

 Don’t wait for it to be stored in a register
 Requires extra connections in the datapath

Chapter 4 — The Processor — 11

Load-Use Data Hazard
 Can’t always avoid stalls by forwarding

 If value not computed when needed
 Can’t forward backward in time!

Chapter 4 — The Processor — 12

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in
the next instruction

 C code for A = B + E; C = B + F;

l w $t 1, 0($t 0)
l w $t 2, 4($t 0)
add $t 3, $t 1, $t 2
sw $t 3, 12($t 0)
l w $t 4, 8($t 0)
add $t 5, $t 1, $t 4
sw $t 5, 16($t 0)

stall

stall

l w $t 1, 0($t 0)
l w $t 2, 4($t 0)
l w $t 4, 8($t 0)
add $t 3, $t 1, $t 2
sw $t 3, 12($t 0)
add $t 5, $t 1, $t 4
sw $t 5, 16($t 0)

11 cycles13 cycles

Chapter 4 — The Processor — 13

Control Hazards
 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute

target early in the pipeline
 Add hardware to do it in ID stage

Chapter 4 — The Processor — 14

Stall on Branch
 Wait until branch outcome determined

before fetching next instruction

Chapter 4 — The Processor — 15

Branch Prediction
 Longer pipelines can’t readily determine

branch outcome early
 Stall penalty becomes unacceptable

 Predict outcome of branch
 Only stall if prediction is wrong

 In MIPS pipeline
 Can predict branches not taken
 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 16

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

Chapter 4 — The Processor — 17

More-Realistic Branch Prediction
 Static branch prediction

 Based on typical branch behavior
 Example: loop and if-statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 18

Pipelining and ISA Design
 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage
 Alignment of memory operands

 Memory access takes only one cycle

Chapter 4 — The Processor — 19

Pipeline Summary

 Pipelining improves performance by
increasing instruction throughput
 Executes multiple instructions in parallel
 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of
pipeline implementation

The BIG Picture

Chapter 4 — The Processor — 20

MIPS Pipelined Datapath
§4.6

 P
ip elin

ed
 D

atapa th and
 C

on
trol

WB

MEM

Right-to-left
flow leads to
hazards

Chapter 4 — The Processor — 21

Pipeline registers
 Need registers between stages

 To hold information produced in previous cycle

Chapter 4 — The Processor — 22

IF for Load, Store, …

Chapter 4 — The Processor — 23

ID for Load, Store, …

Chapter 4 — The Processor — 24

EX for Load

Chapter 4 — The Processor — 25

MEM for Load

Chapter 4 — The Processor — 26

WB for Load

Wrong
register
number

Chapter 4 — The Processor — 27

Corrected Datapath for Load

Chapter 4 — The Processor — 28

EX for Store

Chapter 4 — The Processor — 29

MEM for Store

Chapter 4 — The Processor — 30

WB for Store

Chapter 4 — The Processor — 31

Pipelined Control (Simplified)

Chapter 4 — The Processor — 32

Pipelined Control

	Chapter 4
	Performance Issues
	Pipelining Analogy
	MIPS Pipeline
	Slide 5
	Pipeline Speedup
	Hazards
	Structure Hazards
	Data Hazards
	Forwarding (aka Bypassing)
	Load-Use Data Hazard
	Code Scheduling to Avoid Stalls
	Control Hazards
	Stall on Branch
	Branch Prediction
	MIPS with Predict Not Taken
	More-Realistic Branch Prediction
	Pipelining and ISA Design
	Pipeline Summary
	MIPS Pipelined Datapath
	Pipeline registers
	IF for Load, Store, …
	ID for Load, Store, …
	EX for Load
	MEM for Load
	WB for Load
	Corrected Datapath for Load
	EX for Store
	MEM for Store
	WB for Store
	Pipelined Control (Simplified)
	Slide 32

