Boolean Algebra Operations and Constants

- $\mathrm{A} A N D B=\mathrm{A}^{\wedge} \mathrm{B}=\mathrm{AB}$
- A OR $\mathrm{B}=\mathrm{A} \vee \mathrm{B}=\mathrm{A}+\mathrm{B}$
- NOT $\mathrm{A}=\neg \mathrm{A}=\mathrm{A}^{\prime}$
- TRUE = T = 1
- $\mathrm{FALSE}=\mathrm{F}=0$

Boolean Algebra - Identities

- $\mathrm{A} \cdot$ True $=\mathrm{A}$
- $\mathrm{A}+$ True $=$ True
- A \cdot False $=$ False
- $\mathrm{A}+$ False $=\mathrm{A}$
- $\mathrm{A} \cdot \mathrm{A}=\mathrm{A}$
- $\mathrm{A}+\mathrm{A}=\mathrm{A}$
- $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$
- $\mathrm{A}+\mathrm{A}^{\prime}=$ True
- $\mathrm{A} \cdot \mathrm{A}^{\prime}=$ False

Commutative, Associative, and Distributive Laws

- $\mathrm{AB}=\mathrm{BA}$
(Commutative)
- $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
- $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$
(Associative)
- $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
- $\mathrm{A}(\mathrm{B}+\mathrm{C})=(\mathrm{AB})+(\mathrm{AC}) \quad$ (Distributive)
- $\mathrm{A}+(\mathrm{BC})=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})$

Example: Proving Identities

- Using truth tables, prove:
- $\mathrm{A}+\mathrm{A}^{\prime}=$ True
$A \cdot A^{\prime}=$ False

\mathbf{A}	\mathbf{A}^{\prime}	$\mathbf{A}+\mathbf{A}^{\prime}$
F		
T		

\mathbf{A}	\mathbf{A}^{\prime}	$\mathbf{A} \cdot \mathbf{A}^{\prime}$
F		
T		

(One of the) Associative Laws

- Using truth tables, prove

$$
A(B C)=(A B) C
$$

\mathbf{A}	B	C	B C	A (B C)	$\mathbf{A B}$	(A B) C
F	F	F				
F	F	T				
F	T	F				
F	T	T				
T	F	F				
T	F	T				
T	T	F				
T	T	T				

(One of the) Distributive Laws

- Using truth tables, prove

$$
\mathrm{A}(\mathrm{~B}+\mathrm{C})=(\mathrm{AB})+(\mathrm{A} \mathrm{C})
$$

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{B}+\mathbf{C}$	$\mathbf{A}(\mathbf{B}+\mathbf{C})$	$\mathbf{A} \mathbf{B}$	$\mathbf{A C}$	$\mathbf{(A B)}+(\mathbf{A} \mathbf{C})$
F	F	F					
F	F	T					
F	T	F					
F	T	T					
T	F	F					
T	F	T					
T	T	F					
T	T	T					

Proving DeMorgan's Laws (a)

- Using truth tables, prove $(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}$

A	B	A + B	$(\mathbf{A}+\mathbf{B})^{\boldsymbol{\prime}}$
F	F		
F	T		
T	F		
T	T		

\mathbf{A}	\mathbf{B}	$\mathbf{A}^{\mathbf{\prime}}$	\mathbf{B}^{\prime}	$\mathbf{A}^{\prime} \mathbf{B}^{\mathbf{\prime}}$
F	F			
F	T			
T	F			
T	T			

Proving DeMorgan's Laws (b)

- Prove the $2^{\text {nd }}$ of DeMorgan's Laws:
$(\mathrm{AB})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$

\mathbf{A}	\mathbf{B}	$\mathbf{A B}$	$(\mathbf{A B})^{\prime}$
F	F		
F	T		
T	F		
T	T		

\mathbf{A}	\mathbf{B}	\mathbf{A}^{\prime}	\mathbf{B}^{\prime}	$\mathbf{A}^{\mathbf{\prime}}+\mathbf{B}^{\mathbf{\prime}}$
F	F			
F	T			
T	F			
T	T			

What have we proved in this table?

Exercise: Boolean Algebra

- Exercise - Using the Distributive Property, Identities, and your result from the previous exercise, prove:
$\square A+(A B)=A$
$\square \mathbf{A + (A B)}$
=

