Understanding Cryptography — A Textbook for

Students and Practitioners
by Christof Paar and Jan Pelz|

www.crypto-textbook.com

. — The RSA Cryptosystem

ver. December 7, 2010

These slides were prepared by Benedikt Driessen, Ch ristof Paar and Jan Pelzl

B Some legal stuff (sorry): Terms of use

* The slides can used free of charge. All copyrights for the slides
remain with Christof Paar and Jan Pelzl.

* The title of the accompanying book “Understanding Cryptography”
by Springer and the author’'s names must remain on each slide.

* |f the slides are modified, appropriate credits to the book authors
and the book title must remain within the slides.

* |tis not permitted to reproduce parts or all of the slides in printed
form whatsoever without written consent by the authors.

2/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Content of this Chapter

* The RSA Cryptosystem

* Implementation aspects

* Finding Large Primes

* Attacks and Countermeasures

* Lessons Learned

3/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Content of this Chapter

* The RSA Cryptosystem

* Implementation aspects

* Finding Large Primes

* Attacks and Countermeasures

* Lessons Learned

4 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B The RSA Cryptosystem

* Martin Hellman and Whitfield Diffie published their landmark public-
key paper in 1976

* Ronald Rivest, Adi Shamir and Leonard Adleman proposed the
asymmetric RSA cryptosystem in1977

* Until now, RSA is the most widely use asymmetric cryptosystem
although elliptic curve cryptography (ECC) becomes increasingly
popular

* RSA is mainly used for two applications

« Transport of (i.e., symmetric) keys (cf. Chptr 13 of Understanding
Cryptography)
« Digital signatures (cf. Chptr 10 of Understanding Cryptography)

5/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Encryption and Decryption

* RSA operations are done over the integer ring Z, (i.e., arithmetic
modulo n), where n = p * q, with p, g being large primes

* Encryption and decryption are simply exponentiations in the ring

Definition

Given the public key (n,e) =k, and the private key d = k,,, we write
y = ekpub(x) = x® mod n
X = dy, (Y) = yd mod n

where X,y € Z,

We call e,_ () the encryption and d,_() the decryption operation.

* |n practice X, y, n and d are very long integer numbers (= 1024 bits)

* The security of the scheme relies on the fact that it is hard to derive
the ,private exponent” d given the public-key (n, e)

6/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

M Key Generation

* Like all asymmetric schemes, RSA has set-up phase during which

the private and public keys are computed
Algorithm: RSA Key Generation

Output : public key: k;, = (n,) and private key k,, = d
1. Choose two large primes p, q

2. Computen=p*q

3. Compute &(n) = (p-1) * (g-1)

4

Select the public exponent e € {1, 2, ..., ®(n)-1} such that
gcd(e, @(n)) =1

Compute the private key d such that d * e = 1 mod @(n)
6. RETURNKk,, =(n,e),k, =d

o

Remarks:
* Choosing two large, distinct primes p, q (in Step 1) is non-trivial

* gcd(e, ©(n)) = 1 ensures that e has an inverse and, thus, that there
Is always a private key d

7134 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Example: RSA with small numbers

ALICE BOB
Message x = 4 1. Choosep=3andqg=11
2. Computen=p*qg=33
3. ®(n)=(3-1) *(11-1) =20
4. Choosee =3
S

=pnl1l=
K= (339 d=el=7mod?20

&
<«

y =x® =43 =31 mod 33

v

yd =31’ =4 = x mod 33

8/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Content of this Chapter

* The RSA Cryptosystem

°* Implementation aspects

* Finding Large Primes

* Attacks and Countermeasures

* Lessons Learned

9/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Implementation aspects

* The RSA cryptosystem uses only one arithmetic operation (modular
exponentiation) which makes it conceptually a simple asymmetric
scheme

* Even though conceptually simple, due to the use of very long
numbers, RSA is orders of magnitude slower than symmetric
schemes, e.g., DES, AES

* When implementing RSA (esp. on a constrained device such as
smartcards or cell phones) close attention has to be paid to the
correct choice of arithmetic algorithms

* The square-and-multiply algorithm allows fast exponentiation, even
with very long numbers...

10/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Square-and-Multiply

* Basic principle : Scan exponent bits from left to right and
square/multiply operand accordingly

Algorithm: Square-and-Multiply for x" mod n

Input: Exponent H, base element x, Modulus n

Output : y = x" mod n

1. Determine binary representation H = (h;, h.4, ..., hg),
2. FORi=t1TOO

3 y =y2mod n

4., IF h, =1 THEN

5 y=y*xmodn

6. RETURNY

* Rule: Square in every iteration (Step 3) and multiply current result
by x if the exponent bit h, = 1 (Step 5)

* Modulo reduction after each step keeps the operand y small

11/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Example: Square-and-Multiply

* Computes x2® without modulo reduction

* Binary representation of exponent: 26 =(1,1,0,1,0),=(h,,h3,h,,h;,hy),

Step Binary exponent Op Comment

1 x=x1 Initial setting, h, processed
la (x1)?2=x2 SQ Processing h,

1b X2*x=x3 MUL | hy,=1

2a (x3)%2 = x8 SQ Processing h,

2b - - hy=0

3a (x6)2 = x12 SQ Processing h,

3b xi2* x = x13 MUL | h=1

da (x13)2 = x26 SQ Processing h,

4b - - hy=0

* Observe how the exponent evolves into x26 = x11010

12/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Complexity of Square-and-Multiply Alg.

13 /34

The square-and-multiply algorithm has a logarithmic complexity, i.e.,
Its run time is proportional to the bit length (rather than the absolute
value) of the exponent

Given an exponent with t+1 bits
H = (h,h ,, ..., hy),
with h, = 1, we need the following operations

°* # Squarings =1
* Average # multiplications =0.5t
. Total complexity: #5Q + #MUL =15t

Exponents are often randomly chosen, so 1.5t is a good estimate
for the average number of operations

Note that each squaring and each multiplication is an operation with
very long numbers, e.g., 2048 bit integers.

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Speed-Up Technigues

* Modular exponentiation is computationally intensive

* Even with the square-and-multiply algorithm, RSA can be quite slow
on constrained devices such as smart cards

°* Some important tricks:
o Short public exponent e
. Chinese Remainder Theorem (CRT)

o Exponentiation with pre-computation (not covered here)

14 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Fast encryption with small public exponent

* Choosing a small public exponent e does not weaken the security of

RSA
* A small public exponent improves the speed of the RSA encryption
significantly
Public Key e as binary string #FMUL + #SQ
2141 =3 (11), 1+1=2
24+1 = 17 (1 0001), 4+1=5
216 4+ 1 (1 0000 0000 0000 0001), 16+1=17

* This is a commonly used trick (e.g., SSL/TLS, etc.) and makes RSA
the fastest asymmetric scheme with regard to encryption!

15/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

M Fast decryption with CRT

16 /34

Choosing a small private key d results in security weaknesses!

. In fact, d must have at least 0.3t bits, where t is the bit
length of the modulus n

However, the Chinese Remainder Theorem (CRT) can be used to
(somewhat) accelerate exponentiation with the private key d

Based on the CRT we can replace the computation of
Xd mod @(n) mod N
by two computations
xdmdmP-modp and xdmed@l mod q

where g and p are ,small“* compared to n

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

M Basic principle of CRT-based exponentiation

Problem | ¢ R d g
Domain X xTmodn

Xp > Xpd mod (p-l) mod p
CRT Domain

Xq > qu mod (g-1) mod q

* CRT involves three distinct steps
(1) Transformation of operand into the CRT domain
(2) Modular exponentiation in the CRT domain
(3) Inverse transformation into the problem domain

* These steps are equivalent to one modular exponentiation in the
problem domain

17134 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B CRT: Step 1 — Transformation

* Transformation into the CRT domain requires the knowledge of p
and g

°* pand g are only known to the owner of the private key, hence CRT
cannot be applied to speed up encryption

* The transformation computes (x,, X,) which is the representation of x
iIn the CRT domain. They can be found easily by computing

X,=xmodp and X,=xmod(

18 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B CRT: Step 2 — Exponentiation

* Given d, and d, such that
d,=dmod (p-1) and d,=dmod (g-1)

one exponentiation in the problem domain requires two
exponentiations in the CRT domain

Yo =X, Pmodp and y,=x,%amod g
* In practice, p and q are chosen to have half the bit length of n, i.e.,
Ipl = |a| = n|/2

19/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B CRT: Step 3 — Inverse Transformation

20 /34

Inverse transformation requires modular inversion twice, which is
computationally expensive

C,=g'*modp and c,=p*tmodq
Inverse transformation assembles y,, y, to the final result y mod n in
the problem domain

yE[q*c,]*y, +[p*cy]l*y, modn

The primes p and g typically change infrequently, therefore the cost
of inversion can be neglected because the two expresssions

[a*c,] and[p*cq]
can be precomputed and stored

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Complexity of CRT

21/34

We ignore the transformation and inverse transformation steps since
their costs can be neglected under reasonable assumptions

Assuming that n has t+1 bits, both p and q are about t/2 bits long

The complexity is determined by the two exponentiations in the CRT
domain. The operands are only t/2 bits long. For the exponentiations
we use the square-and-multiply algorithm:

°* #squarings (one exp.): #SQ =0.5t
° # aver. multiplications (one exp.): #MUL = 0.25t
° Total complexity: 2 * (#MUL + #5Q) = 1.5t

This looks the same as regular exponentations, but since the
operands have half the bit length compared to regular exponent.,
each operation (i.e., multipl. and squaring) is 4 times faster!

Hence CRT is 4 times faster than straightforward exponentiation

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Content of this Chapter

* The RSA Cryptosystem

* Implementation aspects

* Finding Large Primes

* Attacks and Countermeasures

* Lessons Learned

22134 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

M Finding Large Primes

* Generating keys for RSA requires finding two large primes p and q
such that n =p * g is sufficiently large

* The size of p and q is typically half the size of the desired size of n

* To find primes, random integers are generated and tested for

primality:
p' ,p’ IS prime*
RNG — Primality Test |—— = OR
prime »P IS composite

|

a

* The random number generator (RNG) should be non-predictable
otherwise an attacker could guess the factorization of n

23 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Primality Tests

24 /34

Factoring p and q to test for primality is typically not feasible

However, we are not interested in the factorization, we only want to
know whether p and g are composite

Typical primality tests are probabilistic, i.e., they are not 100%
accurate but their output is correct with very high probability

A probabillistic test has two outputs:

° ,p’ IS composite” — always true

° ,p‘is aprime*—only true with a certain probability
Among the well-known primality tests are the following

. Fermat Primality-Test

° Miller-Rabin Primality-Test

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Fermat Primality-Test

* Basic idea: Fermat's Little Theorem holds for all primes, i.e., if a
number p*‘is found for which ar-! # 1 mod p’, itis not a prime

Algorithm: Fermat Primality-Test

Input: Prime candidate p‘, security parameter s
Output : ,p‘ is composite” or ,p‘is likely a prime*
1. FORiI=1TOs

2 choose random a € {2,3, ..., p*-2}

3. IFaPl/z= 1 mod p’ THEN

4, RETURN ,p‘is composite*

5. RETURN ,p‘is likely a prime*

* For certain numbers (,Carchimchael numbers®) this test returns ,p
IS likely a prime* often — although these numbers are composite

* Therefore, the Miller-Rabin Test is preferred

25 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Theorem for Miller-Rabin‘s test

* The more powerful Miller-Rabin Test is based on the following
theorem

Theorem
Given the decomposition of an odd prime candidate p*
p'—1=2u"r
where r is odd. If we can find an integer a such that
a #Z1modp* and a? £p'-1modp

For allj ={0,1, ..., u-1}, then p‘ is composite.

Otherwise it is probably a prime.

* This theorem can be turned into an algorithm

26 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Miller-Rabin Primality-Test

Algorithm: Miller-Rabin Primality-Test

Input: Prime candidate p* with p‘-1 = 24" " security parameter s
Output : ,p‘ is composite” or ,p‘is likely a prime*
1. FORiI=1TOs

2. choose random a € {2,3, ..., p*-2}

3. z=a"mod p’

4. IFz#1 AND z# p’-1 THEN

5. FORj=1TOu-1

6. z =272 mod p’

1. IFz=1THEN

8. RETURN ,p‘is composite*

9. IF z # p*-1 THEN

10. RETURN ,p‘is composite*

11. RETURN ,p‘is likely a prime*

27 134 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Content of this Chapter

* The RSA Cryptosystem

* Implementation aspects

* Finding Large Primes

* Attacks and Countermeasures

* Lessons Learned

28 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Attacks and Countermeasures 1/3

* There are two distinct types of attacks on cryptosystems

* Analytical attacks try to break the mathematical structure of the
underlying problem of RSA

* Implementation attacks try to attack a real-world

Implementation by exploiting inherent weaknesses in the way
RSA is realized in software or hardware

29 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Attacks and Countermeasures 2/3

RSA is typically exposed to these analytical attack vectors
* Mathematical attacks
* The best known attack is factoring of n in order to obtain @(n)
* Can be prevented using a sufficiently large modulus n

* The current factoring record is 664 bits. Thus, it is recommended
that n should have a bit length between 1024 and 3072 bits

* Protocol attacks

* Exploit the malleability of RSA, i.e., the property that a ciphertext
can be transformed into another ciphertext which decrypts to a
related plaintext — without knowing the private key

* Can be prevented by proper padding

30 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Attacks and Countermeasures 3/3

* Implementation attacks can be one of the following
. Side-channel analysis

* Exploit physical leakage of RSA implementation (e.g.,
power consumption, EM emanation, etc.)

o Fault-injection attacks

* Inducing faults in the device while CRT is executed can
lead to a complete leakage of the private key

More on all attacks can be found in Section 7.8 of Understanding Cryptography

311734 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Attacks and Countermeasures 2/2

* RSA is typically exposed to these analytical attack vectors (cont’d)
. Protocol attacks
* Exploit the malleability of RSA
* Can be prevented by proper padding
* Implementation attacks can be one of the following
. Side-channel analysis

* Exploit physical leakage of RSA implementation (e.g.,
power consumption, EM emanation, etc.)

. Fault-injection attacks

* Inducing faults in the device while CRT is executed can
lead to a complete leakage of the private key

32134 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Content of this Chapter

* The RSA Cryptosystem

* Implementation aspects

* Finding Large Primes

* Attacks and Countermeasures

* |Lessons Learned

33 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

B Lessons Learned

34 /34

RSA is the most widely used public-key cryptosystem
RSA is mainly used for key transport and digital signatures

The public key e can be a short integer, the private key d needs to
have the full length of the modulus n

RSA relies on the fact that it is hard to factorize n

Currently 1024-bit cannot be factored, but progress in factorization
could bring this into reach within 10-15 years. Hence, RSA with a
2048 or 3076 bit modulus should be used for long-term security

A naive implementation of RSA allows several attacks, and in
practice RSA should be used together with padding

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

