COMP 480: Distributed Systems Winter 2018 Review

Part A: Background Materials

I. Chapter 1, Introduction

- A. What is a distributed system and examples
- B. Common subproblems
- C. Safety Properties
 - i. "Bad things never happen."
 - ii. Examples
- D. Liveness Properties
 - i. "Good things eventually happen."
 - ii. Examples
- E. Review of background material
 - i. Process vs program
 - ii. FIFO channels

II. Chapter 2, Interprocess Communications (IPC)

- A. Guest lecture
- B. Treat inter-thread communications as IPC
- C. Client/Server model
- D. Peer-to-peer model
- E. Not directly responsible for Network Protocols

Part B: Fundamental Topics

III. Chapter 3, Models of Communication

- A. The Need for a Model
- B. A Message-Passing Model for Interprocess Communication
 - i. Channels
 - ii. Synchronous vs. Asynchronous Systems
- C. Relationship among Models
 - i. Strong and Weak Models

IV. Chapter 4, Representing Distributed Algorithms: Syntax and Semantics

- A. Statements
 - i. if ... fi
 - ii. do ... od
- B. Guarded Actions
- C. Nondeterminism
- D. Atomic Operations
- E. Fairness

- i. Unconditionally Fair Scheduler
- ii. Weakly Fair Scheduler
- iii. Strongly Fair Scheduler
- F. Central vs. Distributed Schedulers

V. Chapter 5, Program Correctness

- A. Correctness Criteria
 - i. Safety Properties
 - a. "Bad things never happen."
 - b. Example: If the process stops, it stops with the correct answer.
 - c. One half of program correctness
 - ii. Liveness Properties
 - a. "Good things happen eventually."
 - b. Example: All processes make progress towards an answer.
 - c. The other half of program correctness

VI. Chapter 6, Time in a Distributed System

- A. Introduction
 - i. The Physical Time
 - ii. Sequential and Concurrent Events
- B. Logical Clocks
 - i. Causality and " \prec "
 - ii. Concurrency
- C. Vector Clocks
- D. Physical Clock Synchronization
 - i. Preliminary Definitions
 - a. Clock drift ρ
 - b. Resynchronization period ${\cal R}$
 - ii. Clock Reading Error (Byzantine clocks)
 - iii. Algorithms for Internal Synchronization
 - iv. Algorithms for External Synchronization

Material for Exam II

Part C: Important Paradigms

VII. Chapter 7, Mutual Exclusion

- A. Introduction
- B. Solutions Using Message Passing
 - i. Lamports Solution
 - ii. RicartAgrawalas Solution
 - iii. Maekawas Solution
- C. Token Passing Algorithms
 - i. SuzukiKasami Algorithm
 - ii. Raymonds Algorithm