
Pipelining

Chapter 4 — The Processor — 2

Performance Issues
 Longest delay determines clock period

 Critical path: load instruction
 Instruction memory → register file → ALU →

data memory → register file
 Not feasible to vary period for different

instructions
 Violates design principle

 Making the common case fast
 We will improve performance by pipelining

Chapter 4 — The Processor — 3

Pipelining Analogy
 Pipelined laundry: overlapping execution

 Parallelism improves performance

§4.5
 A

n
 O

verv iew
 of P

ipelin
in

g Four loads:
 Speedup

= 16/7 = 2.3

 Non-stop:
 Speedup

= 4n/n + 3 ≈ 4
= number of stages

Chapter 4 — The Processor — 4

MIPS Pipeline
 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Chapter 4 — The Processor — 5

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 6

Pipeline Speedup
 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages
 If not balanced, speedup is less
 Speedup due to increased throughput

 Latency (time for each instruction) does not
decrease

Chapter 4 — The Processor — 7

Hazards
 Situations that prevent starting the next

instruction in the next cycle
 Structure hazards

 A required resource is busy
 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard
 Deciding on control action depends on

previous instruction

Chapter 4 — The Processor — 8

Structure Hazards
 Conflict for use of a resource
 In MIPS pipeline with a single memory

 Load/store requires data access
 Instruction fetch would have to stall for that

cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require
separate instruction/data memories
 Or separate instruction/data caches

Chapter 4 — The Processor — 9

Data Hazards
 An instruction depends on completion of

data access by a previous instruction
 add $s0, $t 0, $t 1

sub $t 2, $s0, $t 3

Chapter 4 — The Processor — 10

Forwarding (aka Bypassing)
 Use result when it is computed

 Don’t wait for it to be stored in a register
 Requires extra connections in the datapath

Chapter 4 — The Processor — 11

Load-Use Data Hazard
 Can’t always avoid stalls by forwarding

 If value not computed when needed
 Can’t forward backward in time!

Chapter 4 — The Processor — 12

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in
the next instruction

 C code for A = B + E; C = B + F;

l w $t 1, 0($t 0)
l w $t 2, 4($t 0)
add $t 3, $t 1, $t 2
sw $t 3, 12($t 0)
l w $t 4, 8($t 0)
add $t 5, $t 1, $t 4
sw $t 5, 16($t 0)

stall

stall

l w $t 1, 0($t 0)
l w $t 2, 4($t 0)
l w $t 4, 8($t 0)
add $t 3, $t 1, $t 2
sw $t 3, 12($t 0)
add $t 5, $t 1, $t 4
sw $t 5, 16($t 0)

11 cycles13 cycles

Chapter 4 — The Processor — 13

Control Hazards
 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute

target early in the pipeline
 Add hardware to do it in ID stage

Chapter 4 — The Processor — 14

Stall on Branch
 Wait until branch outcome determined

before fetching next instruction

Chapter 4 — The Processor — 15

Branch Prediction
 Longer pipelines can’t readily determine

branch outcome early
 Stall penalty becomes unacceptable

 Predict outcome of branch
 Only stall if prediction is wrong

 In MIPS pipeline
 Can predict branches not taken
 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 16

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

Chapter 4 — The Processor — 17

More-Realistic Branch Prediction
 Static branch prediction

 Based on typical branch behavior
 Example: loop and if-statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 18

Pipelining and ISA Design
 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage
 Alignment of memory operands

 Memory access takes only one cycle

Chapter 4 — The Processor — 19

Pipeline Summary

 Pipelining improves performance by
increasing instruction throughput
 Executes multiple instructions in parallel
 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of
pipeline implementation

The BIG Picture

Chapter 4 — The Processor — 20

MIPS Pipelined Datapath
§4.6

 P
ip elin

ed
 D

atapa th and
 C

on
trol

WB

MEM

Right-to-left
flow leads to
hazards

Chapter 4 — The Processor — 21

Pipeline registers
 Need registers between stages

 To hold information produced in previous cycle

Chapter 4 — The Processor — 22

IF for Load, Store, …

Chapter 4 — The Processor — 23

ID for Load, Store, …

Chapter 4 — The Processor — 24

EX for Load

Chapter 4 — The Processor — 25

MEM for Load

Chapter 4 — The Processor — 26

WB for Load

Wrong
register
number

Chapter 4 — The Processor — 27

Corrected Datapath for Load

Chapter 4 — The Processor — 28

EX for Store

Chapter 4 — The Processor — 29

MEM for Store

Chapter 4 — The Processor — 30

WB for Store

Chapter 4 — The Processor — 31

Pipelined Control (Simplified)

Chapter 4 — The Processor — 32

Pipelined Control

	Chapter 4
	Performance Issues
	Pipelining Analogy
	MIPS Pipeline
	Slide 5
	Pipeline Speedup
	Hazards
	Structure Hazards
	Data Hazards
	Forwarding (aka Bypassing)
	Load-Use Data Hazard
	Code Scheduling to Avoid Stalls
	Control Hazards
	Stall on Branch
	Branch Prediction
	MIPS with Predict Not Taken
	More-Realistic Branch Prediction
	Pipelining and ISA Design
	Pipeline Summary
	MIPS Pipelined Datapath
	Pipeline registers
	IF for Load, Store, …
	ID for Load, Store, …
	EX for Load
	MEM for Load
	WB for Load
	Corrected Datapath for Load
	EX for Store
	MEM for Store
	WB for Store
	Pipelined Control (Simplified)
	Slide 32

