The Halting Problem
P vs. NP
Classifying Problems

- Problems fall into two categories.
 - Computable problems can be solved using an algorithm.
 - Non-computable problems have no algorithm to solve them.
Classifying Computable Problems

- **Tractable**
 - There is an efficient algorithm to solve the problem.

- **Intractable**
 - There is an algorithm to solve the problem but there is no efficient algorithm. (This is difficult to prove.)
Halting Problem Motivation...

• Infinite loops are a problem:

```python
x = 10
while x < 20:
    x = x - 1
```

• Why don't compilers/interpreters check for this?
• Can't be done (perfectly). We'll see a proof by contradiction.
HALT program

- Assume we have a program HALT:
 - Take a program description, as well as a program input.
 - Returns “halt” if the program halts.
 - Returns “loops” if the program loops forever.

\[
\langle P, I \rangle \xrightarrow{} \text{HALT} \rightarrow \text{“halts” or “loops”}
\]

(this follows a proof from Sipser's Introduction to the Theory of Computation, 2006)
A New Machine...

- Let's create a new program D, that uses HALT as a subroutine.

- D takes a program description as input.
 - Sends the program as both program and input to HALT.
 - If HALT says “halt” D enters an infinite loop.
 - If HALT says “loops” D halts.
The Contradiction...

- Now we pass \(<D>\) to the program D.
- What happens?
 - If HALT tells D that D halts on input \(<D>\), then D loops forever on input \(<D>\).
 - If HALT tells D that D loops forever on input \(<D>\), then D halts on input \(<D>\).
What?

• We assumed the existence of a program HALT that can always determine whether a program will halt or run forever.

• We constructed a scenario in which, no matter what answer HALT returns it is wrong.

• Therefore HALT cannot exist.
Rice's Theorem

- Any non-trivial property of programs is undecidable.
- The halting problem is one example among many.
Intractable Problems (?

- Traveling Salesperson
- K-Coloring
- Knapsack
- ...

Intractable Problems

• I’ve claimed that the traveling salesperson problem is intractable.
• The best algorithm we’ve seen so far is $O(N!)$.
• How can we know that there isn’t a better algorithm? Maybe $O(N)$?
• The short answer is that we can’t.
• There is a longer answer that leads us to conclude that TSP is very likely intractable…
P and NP

- **P** the set of problems that can be solved in polynomial time by some algorithm.
- **NP** the set of problems that can be solved in polynomial time by a non-deterministic algorithm.
- Non-deterministic??
Non-Determinism

- Deterministic algorithm must *find* a solution.
- Non-deterministic algorithms get to guess a solution, and only need to *check it*.
- Examples:
 - Sorting has a deterministic polynomial time algorithm.
 - TSP-decision problem has a non-deterministic polynomial time algorithm.
What's the Difference?

- Everyone who is anyone believes that P and NP are different sets.
- In other words, there are some problems that can be solved in polynomial time using non-determinism, but can’t be solved in polynomial time deterministically.
An Aside: Reductions

- Problem A is said to be reducible to problem B if
 - An efficient solution to B would yield an efficient solution to A.

- Example:
 - `IS-THERE-A-PATH` is reducible to `FIND-SHORTEST-PATH`.

- Informally, if A reduces to B, B is at least as hard as A.
NP-Completeness

• It turns out there is (at least) one problem that all problems in NP reduce to: SAT.
 – SAT is the problem of checking to see if a boolean expression is satisfiable.

• Therefore an efficient solution to SAT would yield an efficient solution to every problem in NP.
 – SAT is NP-Complete.
 – SAT is (probably) intractable.

• (We won't prove this...)
Are There Other NP-Complete Problems?

- If so, how would we show it?
- Reductions – Any problem that SAT reduces to is also NP-Complete.
- There are *many* such problems.
- Is P=NP?? Are NP-Complete problems really intractable??